Connect with us


RoboPlant: Synthetic Photosynthesis Achieved!

Synthetic photosynthesis may be one of science’s great achievements of all time, and recent findings may make it so.



synthetic photosynthesis

Synthetic photosynthesis, converting sunlight and carbon dioxide into energy like natural leaves by synthetic means has been a “holy grail” of science. Devising synthetic photosynthesis is a man-made way to capture and the store the power of the sun opens infinite avenues for environmentally friendly energy while utilizing the excess carbon dioxide already in the atmosphere. Now, that holy grail may have been attained. A collaboration between materials and biological scientists at University of California, Berkeley has designed a model that utilizes both light-capturing nano-wires and bacteria to recreate photosynthesis.

The Ins-and-Outs of Synthetic Photosynthesis

First nanowires absorb sunlight. Then, they transfer electrons to a population of anaerobic (non-oxygen needing) bacteria cultivated directly on the nanowires. The bacteria, called Sporomusa ovata, produce enzymes that reduce carbon dioxide into molecular energy products (i.e acetate) that can be used to drive various chemical processes.

Related »
Rare Spix's Macaw Seen In The Wild Again After 15 Years

In a plant, for example, these energy products power the creation of the food stuffs which drive the plant growth. Dr. Peidong Yang, one of the leading scientist in the experiment, demonstrated that the energy intermediates derived from their artificial system could likewise power secondary reactions.

The acetate created by their array was exposed to water and a genetically engineered population of E. Coli. Once combined, the E. Coli “activated” the acetate to Acetyl-CoA, a multipurpose molecule that they used to produce target chemical products such as butanol (comparable to oil-derive gasoline), amorphadiene (a precursor to anti-malarial drug artemisinin), and PHB (a renewable and biodegradable plastic).

Related »
Wireless Power Transfer Test Success: JAXA One Step Closer to a Dyson Sphere?

More important than the aforementioned products, the nanotech/microbiological array’s efficiency converting solar energy was equivalent to that of natural leaf!

Dr. Yang et al are already working on a second generation with “solar-to-chemical” efficiency ten times that rate.

Read Sci-News’ article and Dr. Yang et al’s Abstract for additional details.

Write to Kristen E. Strubberg at

Join the Conversation - Follow TGNR on Social Media: Facebook, Twitter, TumblrPintrest, Instagram, & Flipboard

Kristen E. Strubberg is the Editor-in-Chief for TGNR. Kristen founded TGNR in 2013 - seeking to create a high quality platform for original, eclectic and substantive positive news journalism by attracting expert contributors in many varying subjects. Kristen also works as a clinical medical researcher in Cardiology, with an original background in Neuroscience. Her passion for science has translated to her science-fiction specialization, with her highly adept published insights into the best of sci-fi’s popular culture. Kristen has served as TGNR’s Editor-in-Chief since 2013.